
AVR 8-bit GNU Toolchain: Release
3.4.4.1229
The AVR 8-bit GNU Toolchain supports all AVR 8-bit devices. The AVR 8-bit
Toolchain is based on the free and open-source GCC compiler. The toolchain
includes compiler, assembler, linker and binutils (GCC and Binutils) Standard C
library (AVR-libc) and GNU Debugger (GDB).

About this release

This is an update release that fixes some defects and upgrades binutils to higher
version.

8/32-bits Atmel
Microcontrollers

Release
3.4.4.1229

file:/home/toolsbuild/jenkins-knuth/workspace/avr8-gnu-toolchain/tmp/readme//wiki/Documentation:AVR8_GNU_Toolchain/AVR8_GCC

2 AVR 8-bit GNU
Toolchain

Installation Instructions

System Requirements

AVR 8-bit GNU Toolchain is supported under the following configurations:

Hardware requirements

• Minimum processor Pentium 4, 1GHz
• Minimum 512 MB RAM
• Minimum 500 MB free disk space

AVR 8-bit GNU Toolchain has not been tested on computers with less resources, but may run satisfactorily
depending on the number and size of the projects and the user's patience.

Software requirements

• Windows 2000, Windows XP, Windows Vista, Windows 7 (x86 or x86-64) or Windows 8 (x86 or x86-64).

• AVR 8-bit GNU Toolchain is not supported on Windows 98, NT or ME.

• Fedora 13 or 12 (x86 or x86-64), RedHat Enterprise Linux 4/5/6, Ubuntu Linux 10.04 or 8.04 (x86 or x86-64), or
SUSE Linux 11.2 or 11.1 (x86 or x86-64). AVR 8-bit GNU Toolchain may very well work on other distributions.
However those would be untested and unsupported.

Downloading and Installing

The package comes in two forms:

• As a standalone self extracting installer (.exe)
• As Atmel Studio Toolchain Extension

It may be downloaded from Atmel's website at http://www.atmel.com or from the Atmel Studio Extension Gallery
http://gallery.atmel.com

Installing on Windows

In order to install using standalone installer, the AVR Toolchain installer can be downloaded from Atmel website.
After downloading the installer, double-click the executable file to install. It will ask for a location to install and when
entered, it will extract the toolchain binaries into the corresponding location. This will not add the toolchain path to
the system environment variable "PATH". The user has to do it manually. Any number of installations is possible on
a single machine. To uninstall, please remove the directory from the file system.

In order to install as extension, please refer to Atmel Studio documentation.

Configuring the toolchain in Atmel Studio

If you plan to use the standalone installer outside Atmel Studio, you can skip this section. To configure a
standalone toolchain installation to be used inside Atmel Studio environment, do the following

1. Install the toolchain using the standalone self-extracting installer.
2. From Atmel Studio 6.0 or later, go to Tools menu -> Options.

http://www.atmel.com
http://gallery.atmel.com

AVR 8-bit GNU
Toolchain

3

3. From the dialog select Toolchain -> Package Configuration.
4. From the right pane select nature of the toolchain e.x AVR8 for C, ARM for C++ etc.
5. Click "Add Flavour".
6. From the dialog, enter the name and path to the toolchain executable. For example if it's AVR8 select the path

till avr-gcc.exe. and click OK.

If you want support for other architecture/language, please remember to repeat the exercise by choosing the
correct "Toolchain" within the "Package configuration" tab.

Now you are done with configuring a toolchain for use from within Atmel Studio. To configure a project to use this
toolchain, do the following.

1. Open the project in Atmel Studio (6.0 or later)
2. Right click the project, go to Properties -> Advanced tab.
3. Select the toolchain you configured in the previous step.

Now build the project, and the toolchain should be picked from the configured location.

Installing on Linux

On Linux AVR 8-bit GNU Toolchain is available as a TAR.GZ archive which can be extracted using the 'tar' utility.
In order to install, simply extract to the location where you want the toolchain to run from.

Upgrading from previous versions

Upgrading is not supported with the installer. But you are allowed to have any number of versions of the toolchain
in your machine. If it is installed via Atmel Studio it can be upgraded through the extension manager in Atmel
Studio. See Atmel Studio release notes for more information.

On Linux, if you have it unpacked to a local folder, you just delete the old folder and unpack the latest version in a
new folder.

Layout

Listed below are some directories you might want to know about.

`<install_dir>` = The directory where you installed AVR 8-bit GNU Toolchain.

• <install_dir>\bin
• The AVR software development programs. This directory should be in your `PATH` environment variable.

This includes:
• GNU Binutils
• GCC
• GDB

• <install_dir>\avr\lib
• avr-libc libraries, startup files, linker scripts,and stuff.

• <install_dir>\avr\include
• avr-libc header files for AVR 8-bit.

• <install_dir>\avr\include\avr
• header files specific to the AVR 8-bit MCU. This is where, for example, #include <avr/io.h> comes from.

• <install_dir>\lib
• GCC libraries, other libraries, headers and stuff.

4 AVR 8-bit GNU
Toolchain

• <install_dir>\libexec
• GCC program components

• <install_dir>\doc
• Various documentation.

Toolset Background

AVR 8-bit GNU Toolchain is a collection of executable, open source software development tools for the Atmel AVR
8-bit series of microcontrollers. It includes the GNU GCC compiler for C and C++.

Compiler

The compiler is the GNU Compiler Collection, or GCC. This compiler is incredibly flexible and can be hosted on
many platforms, it can target many different processors/operating systems (back-ends), and can be configured for
multiple different languages (front-ends).

The GCC included in AVR 8-bit GNU Toolchain is targeted for the AVR 8-bit microcontroller and is configured to
compile C or C++.

'' CAUTION: There are caveats on using C++. See the avr-libc FAQ. C++ language is not fully supported and has
some limitations. libstdc++ is unsupported.''

Because this GCC is targeted for the AVR 8-bit MCUs, the main executable that is created is prefixed with the
target name: `avr-gcc` (with '.exe' extension on MS Windows). It is also referred to as AVR GCC.

`avr-gcc` is just a "driver" program only. The compiler itself is called `cc1.exe` for C, or `cc1plus.exe` for C++. Also,
the preprocessor `cpp.exe` will usually automatically be prepended with the target name: `avr-cpp`. The actual set
of component programs called is usually derived from the suffix of each source code file being processed.

GCC compiles a high-level computer language into assembly, and that is all. It cannot work alone. GCC is coupled
with another project, GNU Binutils, which provides the assembler, linker, librarian and more. Since 'gcc' is just a
"driver" program, it can automatically call the assembler and linker directly to build the final program.

Assembler, Linker, Librarian and More

GNU Binutils is a collection of binary utilities. This also includes the assembler, as. Sometimes you will see it
referenced as GNU as or gas. Binutils includes the linker, ld; the librarian or archiver, ar. There are many other
programs included that provide various functionality.

Note that while the assembler uses the same mnemonics as proposed by Atmel, the "glue" (pseudo-ops, operators,
expression syntax) is derived from the common assembler syntax used in Unix assemblers, so it is not directly
compatible to Atmel assembler source files.

Binutils is configured for the AVR target and each of the programs is prefixed with the target name. So you have
programs such as:

• avr-as: The Assembler.
• avr-ld: The Linker.
• avr-ar: Create, modify, and extract from archives (libraries).
• avr-ranlib: Generate index to archive (library) contents.
• avr-objcopy: Copy and translate object files.
• avr-objdump: Display information from object files including disassembly.
• avr-size: List section sizes and total size.

http://gcc.gnu.org/
http://sources.redhat.com/binutils/

AVR 8-bit GNU
Toolchain

5

• avr-nm: List symbols from object files.
• avr-strings: List printable strings from files.
• avr-strip: Discard symbols.
• avr-readelf: Display the contents of ELF format files.
• avr-addr2line: Convert addresses to file and line.
• avr-c++filt: Filter to demangle encoded C++ symbols.
• avr-gdb: GDB, the GNU debugger, allows you to see what is going on `inside' another program targeted to

AVR, while it executes.

See the binutils user manual for more information on what each program can do.

C Library

avr-libc is the Standard C Library for AVR 8-bit GCC. It contains many of the standard C routines, and many non-
standard routines that are specific and useful for the AVR 8-bit MCUs.

NOTE: The actual library is currently split into two main parts, libc.a and libm.a, where the latter contains
mathematical functions (everything mentioned in <math.h>, and a bit more). Thus it is a good idea to always
include the `-lm` linker option. Also, there are additional libraries which allow a customization of the printf and scanf
function families.

avr-libc also contains the most documentation on how to use (and build) the entire toolset, including code
examples. The avr-libc user manual also contains the FAQ on using the toolset.

Debugging

Atmel Studio provides a debugger and also provides simulators for the parts that can be used for debugging as
well. Note that `Atmel Studio` is currently free to the public, but it is not Open Source. The GNU debugger is now
shipped along with the toolchain.

Source Code

Atmel AVR 8-bit GNU Toolchain uses modified source code from GCC, Binutils and AVR-LibC. The source code
and the build scripts used for building the packaged binaries are available at:

http://distribute.atmel.no/tools/opensource/Atmel-AVR-GNU-Toolchain/3.4.4/

Please refer to the README for the instructions on how to use the supplied script to build the toolchain.

http://www.nongnu.org/avr-libc/
http://distribute.atmel.no/tools/opensource/Atmel-AVR-GNU-Toolchain/3.4.4/

6 AVR 8-bit GNU
Toolchain

New and Noteworthy

This chapter lists new and noteworthy items for the AVR 8-bit GNU Toolchain release.

AVR 8-bit GNU Toolchain

Known Issues

• Support for AVR Tiny architecture (ATTiny 4/5/9/10/20/40) has known limitations:
• libgcc implementation has some known limitations
• Standard C / Math library implementation are very limited or not present

• Program memory images beyond 128KBytes are supported by the toolchain, subject to the limitations
mentioned in "3.17.4.1 EIND and Devices with more than 128 Ki Bytes of Flash" at http://gcc.gnu.org/
onlinedocs/gcc/AVR-Options.html

• Named address spaces are supported by the toolchain, subject to the limitations mentioned in "6.16.1 AVR
Named Address Spaces" at http://gcc.gnu.org/onlinedocs/gcc/Named-Address-Spaces.html#AVR%20Named
%20Address%20Spaces

Updates and Issues Fixed

AVRTCDEV-616

• Include GDB along with the toolchain distribution

AVRTCDEV-678

• Binutils upgraded to 2.24

DEVXML-562

• wrong LFUSE_DEFAULT in iotn84a.h

DEVXML-561

• HFUSE_DEFAULT not defined for iotn84.h

DEVXML-527

• In tiny441/841 header file the REMAP register bit U0MAP and SPIMAP interchanged

DEVXML-523

• RSIG is missing from tiny4313 header

DEVXML-513

• IO view not showing TWIE for ATxmega32D3 and ATxmega64D3 devices during debugging

DEVXML-508

• ATtiny2313A, Tiny4313 : PCMSK0 register is missing in device header file

DEVXML-487

• TINY13A has misspelled BOD register bit names

DEVXML-486

http://gcc.gnu.org/onlinedocs/gcc/AVR-Options.html
http://gcc.gnu.org/onlinedocs/gcc/AVR-Options.html
http://gcc.gnu.org/onlinedocs/gcc/Named-Address-Spaces.html#AVR%20Named%20Address%20Spaces
http://gcc.gnu.org/onlinedocs/gcc/Named-Address-Spaces.html#AVR%20Named%20Address%20Spaces

AVR 8-bit GNU
Toolchain

7

• ATTINY24A uses WATCHDOG_vect instead of WDT_vect

DEVXML-467

• Update the production signature of Xmega E

DEVXML-448

• Update missing definitions in atxmega64d4def inc file

DEVXML-349

• Device signature for Mega164A is wrongly mentioned in device header file

DEVXML-311

• ATtiny167, ICR1 register definition error.

DEVXML-300

• ATmega328P has incorrect definitions of fuses in header file, should be BODLEVEL, but is defined as
BOOTSZ0, BOOTSZ1, BOOTRST.

DEVXML-257

• ATTINY2313/ATTINY4313 missing alternative UCSRC register bit defines

DEVXML-174

• TIMCTRL should not be listed under DACB in ATxmega64A3U

DEVXML-171

• Missing external interrupt value option for EICRA

DEVXML-136

• The bitmask for PORTB for tiny25 is erroneously defined

DEVXML-119

• Datasheet for AT90PWM216/316 refers to Bit 1 of PRR as USART0 whereas the header files refers to the same
as USART.

DEVXML-117

• Fix GIFR pin definitions and vector name of the Pin Change Interrupt for the device ATtiny4313

AVRTC-710

• Linking fails occasionally for TINY devices

AVRTC-701

• atxmega16x1 is recognized by gcc but device does not exist

AVRTC-698

8 AVR 8-bit GNU
Toolchain

• power_all_enable power macro broken for ATA664251

AVRTC-696

• AVR GCC compiler does not emit a LDS/STS instruction for ATtiny10

AVRTC-694

• Power macros for AT90PWM216/316 are broken - PRUSART missing

AVRTC-693

• AVR8 3.4.3 toolchain could not recognize XMEGA USB instructions (XCH,LAC,LAS,LAT)

AVRTC-657

• .BOOT section overlaps .data section load image

AVRTC-707

• Error in wdt_enable for XMEGA devices

AVRTC-713

• eeprom write/ update block functions are incorrect for atxmega32e5

Supported Devices
avr2

at90s2313 at90s2323 at90s2333 at90s2343

attiny22 attiny26 at90s4414 at90s4433

at90s4434 at90s8515 at90c8534 at90s8535

avr25

ata5272 ata6616c attiny13 attiny13a

attiny2313 attiny2313a attiny24 attiny24a

attiny4313 attiny44 attiny44a attiny441

attiny84 attiny84a attiny25 attiny45

attiny85 attiny261 attiny261a attiny461

attiny461a attiny861 attiny861a attiny43u

attiny87 attiny48 attiny88 attiny828

attiny841 at86rf401

avr3

at43usb355 at76c711

avr31

atmega103 at43usb320

avr35

ata5505 ata6617c ata664251 at90usb82

at90usb162 atmega8u2 atmega16u2 atmega32u2

AVR 8-bit GNU
Toolchain

9

attiny167 attiny1634

avr4

ata6285 ata6286 ata6289 ata6612c

atmega8 atmega8a atmega48 atmega48a

atmega48p atmega48pa atmega88 atmega88a

atmega88p atmega88pa atmega8515 atmega8535

atmega8hva at90pwm1 at90pwm2 at90pwm2b

at90pwm3 at90pwm3b at90pwm81

avr5

ata5702m322 ata5790 ata5790n ata5795

ata6613c ata6614q atmega16 atmega16a

atmega161 atmega162 atmega163 atmega164a

atmega164p atmega164pa atmega165 atmega165a

atmega165p atmega165pa atmega168 atmega168a

atmega168p atmega168pa atmega169 atmega169a

atmega169p atmega169pa atmega16hvb atmega16hvbrevb

atmega16m1 atmega16u4 atmega32a atmega32

atmega323 atmega324a atmega324p atmega324pa

atmega325 atmega325a atmega325p atmega325pa

atmega3250 atmega3250a atmega3250p atmega3250pa

atmega328 atmega328p atmega329 atmega329a

atmega329p atmega329pa atmega3290 atmega3290a

atmega3290p atmega3290pa atmega32c1 atmega32m1

atmega32u4 atmega32u6 atmega406 atmega64

atmega64a atmega640 atmega644 atmega644a

atmega644p atmega644pa atmega645 atmega645a

atmega645p atmega6450 atmega6450a atmega6450p

atmega649 atmega649a atmega649p atmega6490

atmega16hva atmega16hva2 atmega32hvb atmega6490a

atmega6490p atmega64c1 atmega64m1 atmega64hve

atmega64hve2 atmega64rfr2 atmega644rfr2 atmega32hvbrevb

at90can32 at90can64 at90pwm161 at90pwm216

at90pwm316 at90scr100 at90usb646 at90usb647

at94k m3000

avr51

atmega128 atmega128a atmega1280 atmega1281

atmega1284 atmega1284p atmega128rfa1 atmega128rfr2

atmega1284rfr2 at90can128 at90usb1286 at90usb1287

10 AVR 8-bit GNU
Toolchain

avr6

atmega2560 atmega2561 atmega256rfr2 atmega2564rfr2

avr7

ata5782 ata5831

avrxmega2

atxmega8e5 atxmega16a4 atxmega16a4u atxmega16c4

atxmega16d4 atxmega16e5 atxmega32a4 atxmega32a4u

atxmega32c3 atxmega32c4 atxmega32d3 atxmega32d4

atxmega32e5

avrxmega4

atxmega64a3 atxmega64a3u atxmega64a4u atxmega64b1

atxmega64b3 atxmega64c3 atxmega64d3 atxmega64d4

avrxmega5

atxmega64a1 atxmega64a1u

avrxmega6

atxmega128a3 atxmega128a3u atxmega128b1 atxmega128b3

atxmega128c3 atxmega128d3 atxmega128d4 atxmega192a3

atxmega192a3u atxmega192c3 atxmega192d3 atxmega256a3

atxmega256a3b atxmega256a3bu atxmega256a3u atxmega256c3

atxmega256d3 atxmega384c3 atxmega384d3

avrxmega7

atxmega128a1 atxmega128a1u atxmega128a4u

avrtiny

attiny4 attiny5 attiny9 attiny10

attiny20 attiny40

avr1

at90s1200 attiny11 attiny12 attiny15

}

AVR 8-bit GNU
Toolchain

11

Contact Information

For support on AVR 8-bit GNU Toolchain please contact avr@atmel.com.

Users of AVR 8-bit GNU Toolchain are also welcome to discuss on the AVRFreaks website forum for AVR
Software Tools.

Disclaimer and Credits

AVR 8-bit GNU Toolchain is distributed free of charge for the purpose of developing applications for Atmel AVR
processors. Use for other purposes are not permitted; see the software license agreement for details. AVR 8-bit
GNU Toolchain comes without any warranty.

Copyright 2014 Atmel Corporation. All rights reserved. ATMEL, logo and combinations thereof, Everywhere You
Are, AVR, AVR32, and others, are the registered trademarks or trademarks of Atmel Corporation or its subsidiaries.
Windows, Internet Explorer and Windows Vista are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries. Linux is the registered trademark of Linus Torvalds in the
United States and other countries. Built on Eclipse is a trademark of Eclipse Foundation, Inc. Sun and Java are
registered trademarks of Sun Microsystems, Inc. in the United States and other countries. Mozilla and Firefox are
registered trademarks of the Mozilla Foundation. Fedora is a trademark of Red Hat, Inc. SUSE is a trademark of
Novell, Inc. Other terms and product names may be the trademarks of others.

http://www.avrfreaks.net/

